- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
DeBiasio, Louis (1)
-
Kamel, Yigal (1)
-
McCourt, Grace (1)
-
Sheats, Hannah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ryser's conjecture says that for every $$r$$-partite hypergraph $$H$$ with matching number $$\nu(H)$$, the vertex cover number is at most $$(r-1)\nu(H)$$. This far-reaching generalization of König's theorem is only known to be true for $$r\leq 3$$, or when $$\nu(H)=1$$ and $$r\leq 5$$. An equivalent formulation of Ryser's conjecture is that in every $$r$$-edge coloring of a graph $$G$$ with independence number $$\alpha(G)$$, there exists at most $$(r-1)\alpha(G)$$ monochromatic connected subgraphs which cover the vertex set of $$G$$. We make the case that this latter formulation of Ryser's conjecture naturally leads to a variety of stronger conjectures and generalizations to hypergraphs and multipartite graphs. Regarding these generalizations and strengthenings, we survey the known results, improving upon some, and we introduce a collection of new problems and results.more » « less
An official website of the United States government
